
4/2/2015 Writing shell scripts - Lesson 11: Flow Control - Part 2

http://linuxcommand.org/lc3_wss0110.php 1/8

Flow Control - Part 2
Hold on to your hats. This lesson is going to be a big one!

More Branching
In the previous lesson on flow control we learned about the if command and how it is used to alter
program flow based on a command's exit status. In programming terms, this type of program flow is called
branching because it is like traversing a tree. You come to a fork in the tree and the evaluation of a
condition determines which branch you take.

There is a second and more complex kind of branching called a case. A case is multiple-choice branch.
Unlike the simple branch, where you take one of two possible paths, a case supports several possible
outcomes based on the evaluation of a value.

You can construct this type of branch with multiple if statements. In the example below, we evaluate
some input from the user:

#!/bin/bash

echo -n "Enter a number between 1 and 3 inclusive > "
read character
if [ "$character" = "1" ]; then
    echo "You entered one."
elif [ "$character" = "2" ]; then
    echo "You entered two."

Validation failed. Please retry or wait till
W3C allows validation again

X

http://linuxcommand.org/lc3_wss0080.php


4/2/2015 Writing shell scripts - Lesson 11: Flow Control - Part 2

http://linuxcommand.org/lc3_wss0110.php 2/8

elif [ "$character" = "3" ]; then
    echo "You entered three."
else
    echo "You did not enter a number between 1 and 3."
fi

Not very pretty.

Fortunately, the shell provides a more elegant solution to this problem. It provides a built-in command
called case, which can be used to construct an equivalent program:

#!/bin/bash

echo -n "Enter a number between 1 and 3 inclusive > "
read character
case $character in
    1 ) echo "You entered one."
        ;;
    2 ) echo "You entered two."
        ;;
    3 ) echo "You entered three."
        ;;
    * ) echo "You did not enter a number between 1 and 3."
esac
       

The case command has the following form:

http://linuxcommand.org/lc3_man_pages/caseh.html


4/2/2015 Writing shell scripts - Lesson 11: Flow Control - Part 2

http://linuxcommand.org/lc3_wss0110.php 3/8

case word in
    patterns ) commands ;;
esac
       

case selectively executes statements if word matches a pattern. You can have any number of patterns
and statements. Patterns can be literal text or wildcards. You can have multiple patterns separated by the
"|" character. Here is a more advanced example to show what I mean:

#!/bin/bash

echo -n "Type a digit or a letter > "
read character
case $character in
                                # Check for letters
    [[:lower:]] | [[:upper:]] ) echo "You typed the letter $character"
                                ;;

                                # Check for digits
    [0-9] )                     echo "You typed the digit $character"
                                ;;

                                # Check for anything else
    * )                         echo "You did not type a letter or a digit"
esac

Notice the special pattern "*". This pattern will match anything, so it is used to catch cases that did not
match previous patterns. Inclusion of this pattern at the end is wise, as it can be used to detect invalid
input.



4/2/2015 Writing shell scripts - Lesson 11: Flow Control - Part 2

http://linuxcommand.org/lc3_wss0110.php 4/8

Loops
The final type of program flow control we will discuss is called looping. Looping is repeatedly executing a
section of your program based on the exit status of a command. The shell provides three commands for
looping: while, until and for. We are going to cover while and until in this lesson and for in a
upcoming lesson.

The while command causes a block of code to be executed over and over, as long as the exit status of a
specified command is true. Here is a simple example of a program that counts from zero to nine:

#!/bin/bash

number=0
while [ "$number" -lt 10 ]; do
    echo "Number = $number"
    number=$((number + 1))
done
       

On line 3, we create a variable called number and initialize its value to 0. Next, we start the while loop.
As you can see, we have specified a command that tests the value of number. In our example, we test to
see if number has a value less than 10.

Notice the word do on line 4 and the word done on line 7. These enclose the block of code that will be
repeated as long as the exit status remains zero.

In most cases, the block of code that repeats must do something that will eventually change the exit
status, otherwise you will have what is called an endless loop; that is, a loop that never ends.

In the example, the repeating block of code outputs the value of number (the echo command on line 5)
and increments number by one on line 6. Each time the block of code is completed, the test command's



4/2/2015 Writing shell scripts - Lesson 11: Flow Control - Part 2

http://linuxcommand.org/lc3_wss0110.php 5/8

exit status is evaluated again. After the tenth iteration of the loop, number has been incremented ten
times and the test command will terminate with a non-zero exit status. At that point, the program flow
resumes with the statement following the word done. Since done is the last line of our example, the
program ends.

The until command works exactly the same way, except the block of code is repeated as long as the
specified command's exit status is false. In the example below, notice how the expression given to the
test command has been changed from the while example to achieve the same result:

#!/bin/bash

number=0
until [ "$number" -ge 10 ]; do
    echo "Number = $number"
    number=$((number + 1))
done
       

Building A Menu
One common way of presenting a user interface for a text based program is by using a menu. A menu is a
list of choices from which the user can pick.

In the example below, we use our new knowledge of loops and cases to build a simple menu driven
application:

#!/bin/bash

selection=



4/2/2015 Writing shell scripts - Lesson 11: Flow Control - Part 2

http://linuxcommand.org/lc3_wss0110.php 6/8

until [ "$selection" = "0" ]; do
    echo "
    PROGRAM MENU
    1 - Display free disk space
    2 - Display free memory

    0 - exit program
"
    echo -n "Enter selection: "
    read selection
    echo ""
    case $selection in
        1 ) df ;;
        2 ) free ;;
        0 ) exit ;;
        * ) echo "Please enter 1, 2, or 0"
    esac
done
       

The purpose of the until loop in this program is to re-display the menu each time a selection has been
completed. The loop will continue until selection is equal to "0," the "exit" choice. Notice how we defend
against entries from the user that are not valid choices.

To make this program better looking when it runs, we can enhance it by adding a function that asks the
user to press the Enter key after each selection has been completed, and clears the screen before the
menu is displayed again. Here is the enhanced example:

#!/bin/bash

press_enter()
{



4/2/2015 Writing shell scripts - Lesson 11: Flow Control - Part 2

http://linuxcommand.org/lc3_wss0110.php 7/8

    echo -en "\nPress Enter to continue"
    read
    clear
}

selection=
until [ "$selection" = "0" ]; do
    echo "
    PROGRAM MENU
    1 - display free disk space
    2 - display free memory

    0 - exit program
"
    echo -n "Enter selection: "
    read selection
    echo ""
    case $selection in
        1 ) df ; press_enter ;;
        2 ) free ; press_enter ;;
        0 ) exit ;;
        * ) echo "Please enter 1, 2, or 0"; press_enter
    esac
done

When your computer hangs...
We have all had the experience of an application hanging. Hanging is when a program suddenly
seems to stop and become unresponsive. While you might think that the program has stopped, in



4/2/2015 Writing shell scripts - Lesson 11: Flow Control - Part 2

http://linuxcommand.org/lc3_wss0110.php 8/8

most cases, the program is still running but its program logic is stuck in an endless loop.

Imagine this situation: you have an external device attached to your computer, such as a USB disk
drive but you forgot to turn it on. You try and use the device but the application hangs instead. When
this happens, you could picture the following dialog going on between the application and the
interface for the device:

Application:    Are you ready?
Interface:  Device not ready.

Application:    Are you ready?
Interface:  Device not ready.

Application:    Are you ready?
Interface:  Device not ready.

Application:    Are you ready?
Interface:  Device not ready.

and so on, forever.

Well-written software tries to avoid this situation by instituting a timeout. This means that the loop is
also counting the number of attempts or calculating the amount of time it has waited for something to
happen. If the number of tries or the amount of time allowed is exceeded, the loop exits and the
program generates an error and exits.

© 2000-2015, William E. Shotts, Jr. Verbatim copying and distribution of this entire article is permitted in any medium, provided this
copyright notice is preserved.

Linux® is a registered trademark of Linus Torvalds.

mailto:bshotts@users.sourceforge.net

